Similarity and other spectral relations for symmetric cones

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity and other spectral relations for symmetric cones

A one{to{one relation is established between the nonnegative spectral values of a vector in a primitive symmetric cone and the eigenvalues of its quadratic representation. This result is then exploited to derive similarity relations for vectors with respect to a general symmetric cone. For two positive deenite matrices X and Y , the square of the spectral geometric mean is similar to the matrix...

متن کامل

Differential Recursion Relations for Laguerre Functions on Symmetric Cones

Let Ω be a symmetric cone and V the corresponding simple Euclidean Jordan algebra. In [2, 5, 6, 8] we considered the family of generalized Laguerre functions on Ω that generalize the classical Laguerre functions on R. This family forms an orthogonal basis for the subspace of L-invariant functions in L(Ω, dμν), where dμν is a certain measure on the cone and where L is the group of linear transfo...

متن کامل

TOPOLOGICAL SIMILARITY OF L-RELATIONS

$L$-fuzzy rough sets are extensions of the classical rough sets by relaxing theequivalence relations to $L$-relations. The topological structures induced by$L$-fuzzy rough sets have opened up the way for applications of topological factsand methods in granular computing. In this paper, we firstly prove thateach arbitrary $L$-relation can generate an Alexandrov $L$-topology.Based on this fact, w...

متن کامل

Self-Scaled Barriers for Irreducible Symmetric Cones

Self{scaled barrier functions are fundamental objects in the theory of interior{point methods for linear optimization over symmetric cones, of which linear and semideenite programming are special cases. We are classifying all self{scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with ...

متن کامل

Exact duality for optimization over symmetric cones

We present a strong duality theory for optimization problems over symmetric cones without assuming any constraint qualification. We show important complexity implications of the result to semidefinite and second order conic optimization. The result is an application of Borwein and Wolkowicz’s facial reduction procedure to express the minimal cone. We use Pataki’s simplified analysis and provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2000

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(00)00096-3